Skip to main content Skip to main navigation menu Skip to site footer
Articles
Published: 2022-10-03

Future-Oriented Digital Skills for Process Design and Automation

Bialystok University of Technology
Lucian Blaga University of Sibiu
Industry 4.0 Factory of the Future digital skills process design automation

Abstract

The digital transformation in both the social and business fields requires the development of new skills related to the use and implementation of contemporary IT technologies, which provide the basis for Industry 4.0. One of the main concepts of these changes is the automation and robotization of business processes. The design, implementation and use of solutions in this field require appropriate skills. Therefore, it is necessary to identify gaps in digital skills and reduce them with adequate training and development. The main objective of the paper is to identify both current gaps and future needs for digital design skills to support and understand the automation of business processes. A survey was carried out in manufacturing companies from six European countries. Its results have enabled us to create a future-oriented digital design competence framework that addresses the requirements of process design and automation in the Factory of the Future.

Metrics

Metrics Loading ...

References

  1. Anagnoste, S. (2018). Setting up a robotic process automation center of excellence. Management Dynamics in the Knowledge Economy, 6(2), 307-332. DOI: https://doi.org/10.25019/MDKE/6.2.07
  2. Bejaković, P. and Mrnjavac, Ž. (2020). The importance of digital literacy on the labour market, Employee Relations, Vol. 42 No. 4, pp. 921-932. https://doi.org/10.1108/ER-07-2019-0274 DOI: https://doi.org/10.1108/ER-07-2019-0274
  3. Biegler, C., Steinwender, A., Sala, A., Sihn, W., & Rocchi, V. (2018, June). Adoption of factory of the future technologies. In 2018 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC) (pp. 1-8). IEEE. DOI: https://doi.org/10.1109/ICE.2018.8436310
  4. Carretero, S.; Vuorikari, R. and Punie, Y. (2017). DigComp 2.1: The Digital Competence Framework for Citizens with eight proficiency levels and examples of use, EUR 28558. doi:10.2760/38842
  5. Creswell, J. D., & Creswell J., W. (2018). Research Design. Qualitative, Quantitative, and Mixed Methods Approaches, CA., USA: SAGE.
  6. Curtarelli, M., Gualteri, V., Shater Jannati, M. & Donlevy, V. (2017). ICT for work: Digital skills in the workplace. Luxembourg, Publications Office of the European Union. Retrieved on April 11, 2022, from https://digital-strategy.ec.europa.eu/en/library/ict-work-digital-skills-workplace
  7. European Commission (2022). European Strategy for Universities, Retrieved on June 20, 2022, from https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2022%3A16%3AFIN
  8. European Parliament (2018). EU Key Competences for Lifelong Learning 2018, Retrieved on June 20, 2022, from http://keepcalmandteachenglish.blogspot.com/2018/03/eu-key-competences-for-lifelong.html
  9. Feijao, C., Flanagan, I., Van Stolk, Ch., & Gunashekar, S. (2021). The global digital skills gap: Current trends and future directions. Santa Monica, CA: RAND Corporation, Retrieved on June 12, 2022, from https://www.rand.org/pubs/research_reports/RRA1533-1.html.
  10. Florea, A. (2019). Digital design skills for factories of the future. In MATEC Web of Conferences (Vol. 290, p. 14002). EDP Sciences. DOI: https://doi.org/10.1051/matecconf/201929014002
  11. Flores, E., Xu, X., & Lu, Y. (2020). Human Capital 4.0: a workforce competence typology for Industry 4.0. Journal of Manufacturing Technology Management. https://doi.org/10.1108/JMTM-08-2019-0309 DOI: https://doi.org/10.1108/JMTM-08-2019-0309
  12. Hecklau, F., Orth, R., Kidschun, F., & Kohl, H. (2017, December). Human resources management: Meta-study-analysis of future competences in Industry 4.0. In Proceedings of the International Conference on Intellectual Capital, Knowledge Management & Organizational Learning (pp. 163-174).
  13. Hernandez-de-Menendez, M., Morales-Menendez, R., Escobar, C. A., & McGovern, M. (2020). Competencies for industry 4.0. International Journal on Interactive Design and Manufacturing (IJIDeM), 14(4), 1511-1524. https://doi.org/10.1007/s12008-020-00716-2 DOI: https://doi.org/10.1007/s12008-020-00716-2
  14. Hirschi, A. (2018). The fourth industrial revolution: Issues and implications for career research and practice. The career development quarterly, 66(3), 192-204. https://doi.org/10.1002/cdq.12142 DOI: https://doi.org/10.1002/cdq.12142
  15. https://ec.europa.eu/growth/tools-databases/adma/factories-future_en
  16. Ilomäki, L., Paavola, S., Lakkala, M., & Kantosalo, A. (2016). Digital competence–an emergent boundary concept for policy and educational research. Education and information technologies, 21(3), 655-679. https://doi.org/10.1007/s10639-014-9346-4 DOI: https://doi.org/10.1007/s10639-014-9346-4
  17. Kedziora, D., & Kiviranta, H. (2018). Digital Business Value Creation with Robotic Process Automation (RPA) in Northern and Central Europe. Management, 13(2). doi: 10.26493/1854-4231.13.161-174. DOI: https://doi.org/10.26493/1854-4231.13.161-174
  18. Kedziora, D., & Penttinen, E. (2021). Governance models for robotic process automation: The case of Nordea Bank. Journal of Information Technology Teaching Cases, 11(1), 20-29. https://doi.org/10.1177/2043886920937022 DOI: https://doi.org/10.1177/2043886920937022
  19. Kedziora, D., Leivonen, A., Piotrowicz, W., & Öörni, A. (2021). Robotic Process Automation (RPA) Implementation Drivers: Evidence of Selected Nordic Companies. Issues in Information Systems, 22(2). https://doi.org/10.48009/2_iis_2021_21-40 DOI: https://doi.org/10.48009/2_iis_2021_21-40
  20. Kipper, L. M., Iepsen, S., Dal Forno, A. J., Frozza, R., Furstenau, L., Agnes, J., & Cossul, D. (2021). Scientific mapping to identify competencies required by industry 4.0. Technology in Society, 64, 101454. DOI: https://doi.org/10.1016/j.techsoc.2020.101454
  21. KPMG (2016). The Factory of the Future. Industry 4.0 – The challenges of tomorrow. Retrieved on April 3, 2022, from https://assets.kpmg/content/dam/kpmg/es/pdf/2017/06/the-factory-of-the-future.pdf
  22. Kumar, N., & Kumar, J. (2019). Efficiency 4.0 for Industry 4.0. Human Technology, 15(1). doi:10.17011/ht/urn.201902201608 DOI: https://doi.org/10.17011/ht/urn.201902201608
  23. Kunrath, K., Cash, P., & Kleinsmann, M. (2020). Designers’ professional identity: personal attributes and design skills. Journal of Engineering Design, 31(6), 297-330. DOI: https://doi.org/10.1080/09544828.2020.1743244
  24. Lasi, H., Fettke, P., Kemper, H. G., Feld, T., & Hoffmann, M. (2014). Industry 4.0. Business & information systems engineering, 6(4), 239-242. DOI: https://doi.org/10.1007/s12599-014-0334-4
  25. Lee, J., Bagheri, B., & Kao, H. A. (2015). A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing letters, 3, 18-23. DOI: https://doi.org/10.1016/j.mfglet.2014.12.001
  26. Madakam, S., Holmukhe, R. M., & Jaiswal, D. K. (2019). The future digital work force: robotic process automation (RPA). JISTEM-Journal of Information Systems and Technology Management, 16. doi: 10.4301/S1807-1775201916001. DOI: https://doi.org/10.4301/S1807-1775201916001
  27. Margherita, E. G., & Braccini, A. M. (2021). Managing the fourth industrial revolution: A competence framework for smart factory. The Fourth Industrial Revolution: Implementation of Artificial Intelligence for Growing Business Success, 389-402. DOI: https://doi.org/10.1007/978-3-030-62796-6_23
  28. McGuinness, S., & Ortiz, L. (2016). Skill gaps in the workplace: Measurement, determinants and impacts. Industrial Relations Journal, 47(3), 253-278. https://doi.org/10.1111/irj.12136 DOI: https://doi.org/10.1111/irj.12136
  29. Morandini, M. C., Thum-Thysen, A., & Vandeplas, A. (2020). Facing the Digital Transformation: are Digital Skills Enough? (No. 054). Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
  30. Müller, J. M., Kiel, D., & Voigt, K. I. (2018). What drives the implementation of Industry 4.0? The role of opportunities and challenges in the context of sustainability. Sustainability, 10(1), 247. https://doi.org/10.3390/su10010247 DOI: https://doi.org/10.3390/su10010247
  31. Oberländer, M., Beinicke, A., & Bipp, T. (2020). Digital competencies: A review of the literature and applications in the workplace. Computers & Education, 146, 103752. https://doi.org/10.1016/j.compedu.2019.103752 DOI: https://doi.org/10.1016/j.compedu.2019.103752
  32. Ozkan-Ozen, Y. D., & Kazancoglu, Y. (2021). Analysing workforce development challenges in the Industry 4.0. International Journal of Manpower, 43(2), 310-333. https://doi.org/10.1108/IJM-03-2021-0167 DOI: https://doi.org/10.1108/IJM-03-2021-0167
  33. Pontes, J., Geraldes, C. A., Fernandes, F. P., Sakurada, L., Rasmussen, A. L., Christiansen, L., ... & Leitao, P. (2021, March). Relationship between Trends, Job Profiles, Skills and Training Programs in the Factory of the Future. In 2021 22nd IEEE International Conference on Industrial Technology (ICIT) (Vol. 1, pp. 1240-1245). IEEE. doi: 10.1109/ICIT46573.2021.9453584 DOI: https://doi.org/10.1109/ICIT46573.2021.9453584
  34. Pouliakas, K. (2018). Determinants of Automation Risk in the EU Labour Market: A Skills-Needs Approach (No. 11829). Institute of Labor Economics (IZA). Retrieved on April 05, 2022, from https://docs.iza.org/dp11829.pdf DOI: https://doi.org/10.2139/ssrn.3253487
  35. Pramod, D. (2022). Robotic process automation for industry: adoption status, benefits, challenges and research agenda. Benchmarking: An International Journal, 29(5), 1562-1586. https://doi.org/10.1108/BIJ-01-2021-0033 DOI: https://doi.org/10.1108/BIJ-01-2021-0033
  36. Rahi, S. (2017). Research design and methods: A systematic review of research paradigms, sampling issues and instruments development. International Journal of Economics & Management Sciences, 6(2), 1-5. doi: 10.4172/2162-6359.1000403 DOI: https://doi.org/10.4172/2162-6359.1000403
  37. Ras, E., Wild, F., Stahl, C., & Baudet, A. (2017, June). Bridging the skills gap of workers in Industry 4.0 by human performance augmentation tools: Challenges and roadmap. In Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive Environments (pp. 428-432). https://doi.org/10.1145/3056540.3076192. DOI: https://doi.org/10.1145/3056540.3076192
  38. Sarc, R., Curtis, A., Kandlbauer, L., Khodier, K., Lorber, K. E., & Pomberger, R. (2019). Digitalisation and intelligent robotics in value chain of circular economy oriented waste management–A review. Waste Management, 95, 476-492. https://doi.org/10.1016/j.wasman.2019.06.035. DOI: https://doi.org/10.1016/j.wasman.2019.06.035
  39. Sari, Y., Muhtarom, A., Nguyen, Q. L. H. T. T., Nguyen, P. T., &Ansir. (2020). Predictors of job performance: Moderating role of conscientiousness. International Journal of Innovation, Creativity and Change, 11(6), 135-152. Retrieved on May 10, 2022, from http://eprints.ulm.ac.id/9558/1/11610_Sari_2020_E_R.pdf
  40. Schlegel, D., & Kraus, P. (2021). Skills and competencies for digital transformation–a critical analysis in the context of robotic process automation. International Journal of Organizational Analysis. Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/IJOA-04-2021-2707 DOI: https://doi.org/10.1108/IJOA-04-2021-2707
  41. Shet, S. V., & Pereira, V. (2021). Proposed managerial competencies for Industry 4.0–Implications for social sustainability. Technological Forecasting and Social Change, 173, 121080. https://doi.org/10.1016/j.techfore.2021.121080 DOI: https://doi.org/10.1016/j.techfore.2021.121080
  42. Siderska, J. (2020). Robotic Process Automation - a driver of digital transformation? Engineering Management in Production and Services, 12(2), 21-31. doi: 10.2478/emj-2020-0009 DOI: https://doi.org/10.2478/emj-2020-0009
  43. Sobczak, A. (2021). Robotic Process Automation implementation, deployment approaches and success factors–an empirical study. Entrepreneurship and Sustainability Issues, 8(4), 122-147. https://doi.org/10.9770/jesi.2021.8.4(7) DOI: https://doi.org/10.9770/jesi.2021.8.4(7)
  44. Spöttl, G., & Windelband, L. (2021). The 4th industrial revolution–its impact on vocational skills. Journal of Education and Work, 34(1), 29-52. https://doi.org/10.1080/13639080.2020.1858230. DOI: https://doi.org/10.1080/13639080.2020.1858230
  45. Teddlie, C., & Tashakkori, A. (2009). Foundations of mixed methods research: Integrating quantitative and qualitative approaches in the social and behavioral sciences, Ca., USA: Sage.
  46. Thames, L., Schaefer, D. (2017). Industry 4.0: An Overview of Key Benefits, Technologies, and Challenges. In: Thames, L., Schaefer, D. (eds) Cybersecurity for Industry 4.0. Springer Series in Advanced Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-319-50660-9_1 DOI: https://doi.org/10.1007/978-3-319-50660-9_1
  47. The FoF-Designer: Digital Design Skills For Factories Of The Future, DIGIFoF (2019). Report on needs and demands for FoF-design: Findings and recommendations. Retrieved on January 10, 2022, from http://www.digifof.eu/results/d12-report-needs-and-demands-fof
  48. Universities of the Future: Industry 4.0 Implications for Higher Education Institutions. State-of-Maturity and Competence Needs, pp. 1–66 (2019). Retrieved on April 11, 2022, from universitiesofthefuture.eu/wp-content/uploads/2019/02/State-of-Maturity_Report.pdf.
  49. van Laar, E., van Deursen, A. J., van Dijk, J. A., & de Haan, J. (2020). Determinants of 21st-century skills and 21st-century digital skills for workers: A systematic literature review. Sage Open, 10(1), 1-14. doi: 10.1177/2158244019900176. DOI: https://doi.org/10.1177/2158244019900176
  50. Veile, J. W., Kiel, D., Müller, J. M., & Voigt, K. I. (2020). Lessons learned from Industry 4.0 implementation in the German manufacturing industry. Journal of Manufacturing Technology Management, 31(5). doi: 10.1108/JMTM-08-2018-0270. DOI: https://doi.org/10.1108/JMTM-08-2018-0270
  51. World Economic Forum (2017). Realizing Human Potential in the Fourth Industrial Revolution An Agenda for Leaders to Shape the Future of Education, Gender and Work, 2017, unesco.org/eforum/ CompetenceStandardsforTVET.pdf
  52. World Economic Forum (January 2020). Jobs of Tomorrow: Mapping Opportunity in the New Economy. Retrieved on May 10, 2022, from https://www3.weforum.org/docs/WEF_Jobs_of_Tomorrow_2020.pdf
  53. World Economic Forum (October 2020). The Future of Jobs Report 2020. Retrieved on March 04, 2022, from https://www.weforum.org/reports/the-future-of-jobs-report-2020/in-full/chapter-2-forecasts-for-labour-market-evolution-in-2020-2025/
  54. Yao, X., Zhou, J., Zhang, J., & Boër, C. R. (2017, September). From intelligent manufacturing to smart manufacturing for industry 4.0 driven by next generation artificial intelligence and further on. In 2017 5th international conference on enterprise systems (ES) (pp. 311-318). IEEE. doi: 10.1109/ES.2017.58 DOI: https://doi.org/10.1109/ES.2017.58
  55. Zheng, P., Sang, Z., Zhong, R. Y., Liu, Y., Liu, C., Mubarok, K., ... & Xu, X. (2018). Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and future perspectives. Frontiers of Mechanical Engineering, 13(2), 137-150. https://doi.org/10.1007/s11465-018-0499-5 DOI: https://doi.org/10.1007/s11465-018-0499-5

How to Cite

Jurczuk, A., & Florea, A. (2022). Future-Oriented Digital Skills for Process Design and Automation. Human Technology, 18(2), 122–142. https://doi.org/10.14254/1795-6889.2022.18-2.3